skip to main content


Search for: All records

Creators/Authors contains: "Cupani, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Intervening C iv absorbers are key tracers of metal-enriched gas in galaxy haloes over cosmic time. Previous studies suggest that the C iv cosmic mass density ($\Omega _{\rm C \, \small {IV}}$) decreases slowly over 1.5 $\lesssim \, z\lesssim$ 5 before declining rapidly at z ≳ 5, but the cause of this downturn is poorly understood. We characterize the $\Omega _{\rm C \, \small {IV}}$ evolution over 4.3 ≲ z ≲ 6.3 using 260 absorbers found in 42 XSHOOTER spectra of z ∼ 6 quasars, of which 30 come from the ESO Large Program XQR-30. The large sample enables us to robustly constrain the rate and timing of the downturn. We find that $\Omega _{\rm C \, \small {IV}}$ decreases by a factor of 4.8 ± 2.0 over the ∼300 Myr interval between z ∼ 4.7 and ∼5.8. The slope of the column density (log N) distribution function does not change, suggesting that C iv absorption is suppressed approximately uniformly across 13.2 ≤ log N/cm−2 < 15.0. Assuming that the carbon content of galaxy haloes evolves as the integral of the cosmic star formation rate density (with some delay due to stellar lifetimes and outflow travel times), we show that chemical evolution alone could plausibly explain the fast decline in $\Omega _{\rm C \, \small {IV}}$ over 4.3 ≲ z ≲ 6.3. However, the C iv/C ii ratio decreases at the highest redshifts, so the accelerated decline in $\Omega _{\rm C \, \small {IV}}$ at z ≳ 5 may be more naturally explained by rapid changes in the gas ionization state driven by evolution of the UV background towards the end of hydrogen reionization. 
    more » « less
  2. ABSTRACT

    Intervening metal absorption lines in the spectra of z ≳ 6 quasars are fundamental probes of the ionization state and chemical composition of circumgalactic and intergalactic gas near the end of the reionization epoch. Large absorber samples are required to robustly measure typical absorber properties and to refine models of the synthesis, transport, and ionization of metals in the early Universe. The Ultimate XSHOOTER legacy survey of quasars at z ∼ 5.8–6.6 (XQR-30) has obtained high signal-to-noise spectra of 30 luminous quasars, nearly quadrupling the existing sample of 12 high quality z ∼ 6 quasar spectra. We use this unprecedented sample to construct a catalogue of 778 systems showing absorption in one or more of Mg ii (360 systems), Fe ii (184), C ii (46), C iv (479), Si iv (127), and N v (13) which span 2 ≲ z ≲ 6.5. This catalogue significantly expands on existing samples of z ≳ 5 absorbers, especially for C iv and Si iv which are important probes of the ionizing photon background at high redshift. The sample is 50 per cent (90 per cent) complete for rest-frame equivalent widths W ≳ 0.03 Å (0.09 Å). We publicly release the absorber catalogue along with completeness statistics and a python script to compute the absorption search path for different ions and redshift ranges. This data set is a key legacy resource for studies of enriched gas from the era of galaxy assembly to cosmic noon, and paves the way for even higher redshift studies with JWST and 30 m-class telescopes.

     
    more » « less
  3. ABSTRACT The final phase of the reionization process can be probed by rest-frame UV absorption spectra of quasars at z ≳ 6, shedding light on the properties of the diffuse intergalactic medium within the first Gyr of the Universe. The ESO Large Programme ‘XQR-30: the ultimate XSHOOTER legacy survey of quasars at z ≃ 5.8–6.6’ dedicated ∼250 h of observations at the VLT to create a homogeneous and high-quality sample of spectra of 30 luminous quasars at z ∼ 6, covering the rest wavelength range from the Lyman limit to beyond the Mg ii emission. Twelve quasar spectra of similar quality from the XSHOOTER archive were added to form the enlarged XQR-30 sample, corresponding to a total of ∼350 h of on-source exposure time. The median effective resolving power of the 42 spectra is R ≃ 11 400 and 9800 in the VIS and NIR arm, respectively. The signal-to-noise ratio per 10 km s−1 pixel ranges from ∼11 to 114 at λ ≃ 1285 Å rest frame, with a median value of ∼29. We describe the observations, data reduction, and analysis of the spectra, together with some first results based on the E-XQR-30 sample. New photometry in the H and K bands are provided for the XQR-30 quasars, together with composite spectra whose characteristics reflect the large absolute magnitudes of the sample. The composite and the reduced spectra are released to the community through a public repository, and will enable a range of studies addressing outstanding questions regarding the first Gyr of the Universe. 
    more » « less
    Free, publicly-accessible full text available May 23, 2024
  4. ABSTRACT

    We investigate the abundance and distribution of metals in the high-redshift intergalactic medium and circum-galactic medium through the analysis of a sample of almost 600 Si iv absorption lines detected in high- and intermediate-resolution spectra of 147 quasars. The evolution of the number density of Si iv lines, the column density distribution function, and the cosmic mass density are studied in the redshift interval 1.7 ≲ z ≲ 6.2 and for log N(Si iv) ≥ 12.5. All quantities show a rapid increase between z ∼ 6 and z ≲ 5 and then an almost constant behaviour to z ∼ 2 in very good agreement with what is already observed for C iv absorption lines. The present results are challenging for numerical simulations: When simulations reproduce our Si iv results, they tend to underpredict the properties of C iv, and when the properties of C iv are reproduced, the number of strong Si iv lines [log N(Si iv) > 14] is overpredicted.

     
    more » « less
  5. ABSTRACT We discovered a strongly lensed (μ ≳ 40) Ly α emission at z = 6.629 (S/N ≃ 18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field (HFF) galaxy cluster MACS J0416. Dedicated lensing simulations imply that the Ly α emitting region necessarily crosses the caustic. The arc-like shape of the Ly α extends 3 arcsec on the observed plane and is the result of two merged multiple images, each one with a de-lensed Ly α luminosity L ≲ 2.8 × 1040 erg s−1 arising from a confined region (≲150 pc effective radius). A spatially unresolved Hubble Space Telescope(HST) counterpart is barely detected at S/N ≃ 2 after stacking the near-infrared bands, corresponding to an observed (intrinsic) magnitude m1500 ≳ 30.8 (≳35.0). The inferred rest-frame Ly α equivalent width is EW0 > 1120 if the IGM transmission is TIGM < 0.5. The low luminosities and the extremely large Ly α EW0 match the case of a Population III (Pop III) star complex made of several dozens stars (∼104 M⊙) that irradiate an H ii region crossing the caustic. While the Ly α and stellar continuum are among the faintest ever observed at this redshift, the continuum and the Ly α emissions could be affected by differential magnification, possibly biasing the EW0 estimate. The aforementioned tentative HST detection tends to favour a large EW0, making such a faint Pop III candidate a key target for the James Webb Space Telescope and Extremely Large Telescopes. 
    more » « less